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The Novel Cyclodimerization of Phenylacetylene at a Ruthenium(n) Centre. The
Synthesis and X-Ray Structural Characterization of the First Metallacyclopentatriene,
[(n-CsHs)Ru(C4Ph,H,)Br], and its Facile Conversion into Metallacyclopentadienes
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Cyclodimerization of two molecules of phenylacetylene at the ruthenium(i) centre in [(n-CsHs)Ru(n-CgH12)Br] (CgH,;
= cyclo-octa-1,5-diene) gives the novel ruthenacyclopentatriene [(n-C4Hs)Ru(C4Ph;H,)Br] characterized by *H and 13C
n.m.r. spectroscopy and by X-ray analysis; the triene undergoes facile ‘oxidative addition’ with donor ligands L (e.g.
morpholine, trimethyl phosphite, dimethylphenylphosphine) in a bimolecular reaction involving an associative
mode of activation to give the ruthenacyclopentadienes [(n-CsHs})Ru(L)(C,Ph,H,)Br].

Mechanistic steps involving the formation of metallacycles,
and their interconversions and subsequent decay, are impli-
cated in a number of important catalytic transformations.! In
particular, it has been shown that the cyclodimerization of two
molecules of an alkyne at a transition metal centre leads to
metallacyclopentadiene complexes!—3 (1), currently favoured
as key intermediates in the catalytic cyclo-oligomerization of

alkynes to aromatic compounds.2.3 Herein we report on the
novel cyclodimerization of phenylacetylene at the ruth-
enium(1r) centre in {(n-CsHs)Ru(n-CgH;,)Br] (CgHi, = cyclo-
octa-1,5-diene), a reaction which does not lead to a metalla-
cyclopentadiene but rather to the first example of a metalla-
cyclopentatriene (2).

The complex [(n-CsHs)Ru(n-CgH;,)Br]* (3) reacts with
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phenylacetylene (mole ratio 1:4) in dichloromethane at 0°C
to give a dark green solution. Slow addition of hexane affords
green crystals of composition [(n-CsHs)Ru(C,Ph,H,)Br] (4)t
(vield 60—70%). In the high-field H n.m.r. spectrum of (4)
(500.13 MHz, CDCl;, 303 K) a sharp singlet is observed for
the cyclopentadienyl ligand at 8 5.21. A signal for two
magnetically equivalent hydrogen atoms appears at & 7.82,
downfield of the phenyl protons which resonate at & 7.74 (tt,
2H, H,,,,), 7.27 (dd, 4H, H,,4,), and 7.19 (m, 4H, H,,.,). In
the BC{!H} n.m.r. spectrum (125.76 MHz, CDCl;, 303 K) a
resonance appears at § 94.5 assignable to the cyclopentadienyl
ligand with the expected four resonances for two equivalent
phenyl rings appearing at & 161.7, 128.9, 127.6, and 123.8.
Only two further resonances, each accounting for two carbon
atoms, are observed, one at 8 156.0 and the other at § 271.1.
The unusual position observed for the two proton resonance
downfield of the phenyl proton resonances (suggestive of
strong paramagnetic shielding arising from ring current effects
in a metallacycle), and the two 13C resonances appearing at &
156.0 and & 271.1 (suggestive of metallacycle sp? ring carbon
atoms3 and metal-carbene a-carbon atoms, 8 respectively) lend
support for the formulation of the C,Ph,H, moiety in (4) as an
unsaturated bis-carbene ligand, and the unit {RuC,Ph,H,} as
the first example of a metallocyclopentatriene.

The X-ray crystal structure of (4) has been determined.?
The structure (Figure 1) confirms the cyclodimerization of two
molecules of phenylacetylene and the formation of a five-
membered ruthenacycle with both phenyl substituents in the
a-position. The complex has crystallographic mirror
symmetry with the ruthenium, bromine, C(23), and H(23)
atoms lying in the mirror plane. The {RuC,Ph,H,} metalla-
cycle is close to planar, with the ruthenium atom lying only
0.215 A out of the C4 plane. The bond lengths within the
metallacycle support a largely delocalized metallacyclopenta-
triene structure; the Ru—C(1) distance of 1.942(6) A is close to
the Ru=C double bond length range of 1.83—1.91 A observed
in previously reported ruthenium-alkylidene complexes,” and
is significantly shorter than the Ru-C single bond length range
of 2.030(16)—2.117(9) A reported for ruthenacyclopenta-
dienes.* The C(1)-C(2) and C(2)-C(2') bond lengths of
1.403(8) and 1.377(12) A also reflect the proposed metalla-
cyclopentatriene structure but meaningful comparisons with
ruthenacyclopentadiene complexes® are difficult to make.

1 A satisfactory elemental analysis was obtained.

1 Crystal data for (4): C,;H,,BrRu, M = 450.35, orthorhombic, space
group Cmc2,, a = 18.264(3), b = 11.806(2), ¢ = 8.028(2) A, U =
1731.1(10) A3, Z = 4, D, = 1.728 Mg m~3, F(000) = 888, u(Mo-K,,) =
3.070 mm —', A = 0.71069 A. The structure was solved by heavy atom
(Patterson and difference Fourier) methods and was refined by full
matrix weighted least squares [Z w|AF|2 minimized, w = 6-2(F,)] with
all non-hydrogen atoms anisotropic. All hydrogen atoms were located
in a difference map but only H(2) was freely refined. All other
hydrogen atoms were fixed in idealized positions (dc.yy = 0.95 A)and
separate common isotropic temperature factors were refined for the
phenyl and cyclopentadienyl hydrogen atoms. R = 0.0391 and R,, =
0.0306 for 1061 unique reflections with F, < 40(F,) collected at 295 K
on an Enraf-Nonius CAD4F diffractometer. Atomic co-ordinates,
bond lengths and angles, and thermal parameters have been deposited
at the Cambridge Crystallographic Data Centre. See Notice to
Authors, Issue No. 1, 1986.
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Figure 1. A perspective view of (4) showing the atom numbering
scheme. Selected bond lengths (A) and angles (°): Ru-Br 2.493(1),
Ru-C(1) 1.942(6), Ru-C(21) 2.346(7), Ru—C(22) 2.294(8), Ru-C(23)
2.143(12), C(1)-C(2) 1.403(8), C(2)~-C(2") 1.377(12); C(1)-Ru~C(1’)
78.7(4), Ru-C(1)-C(2) 117.6(5), C(1)-C(2)-C(2’) 112.8(6).

A mechanism to account for the formation of (4) is outlined
in Scheme 1. Cyclo-octadiene substitution in (3) by donor
ligands has been established to be a facile process.4 Cyclo-
dimerization of two molecules of phenylacetylene together
with concomitant oxidative addition to the metal atom would
be expected, on the basis of numerous precedents,! to form
initially a co-ordinatively unsaturated 16-electron ruth-
enium(1v)-metallacyclopentadiene complex (5). In interpret-
ing the conversion of (5) into the formally 18-electron
ruthenium(u)-metallacyclopentatriene (4), (5) is best likened
to cyclopentadienylidene [shown below (5); Scheme 1] which
could undergo a redistribution of electrons to give cyclopent-
atriene [below (4)]. In a similar manner, participation of a pair
of ruthenium-based electrons would give the ‘metalla-allene’
or metallacyclopentatriene (4).

The most important implication of such a relationship
between (4) and (5) is that the provision of a pair of electrons
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by a donor ligand to the metal atom in (4) should obviate the
need for the triene structure, with a reversion to a metalla-
cyclopentadiene, this time, however, forming the saturated
18-electron complex [(n-CsHs)Ru(L)(C4Ph,H;)Br].

[(TI'CSHS)RU(&))(Cththz)Br]

Indeed, treatment of (4) with a single molar equivalent of
the donor ligands morpholine, trimethyl phosphite, or
dimethylphenylphosphine in CDCl; (25 °C) rapidly generates
species which on the basis of their 1H and 3C{!H} n.m.r.
characteristics are formulated as the metallacyclopentadiene
complexes  [(n-CsHs)Ru(L)(C4Ph,H;)Br] (6) [L =
HN(CH,CH,),0, P(OMe)3, or PMe,Ph]. In a typical example
(6) [L = HN(CH,CH,),0],8 it is the marked upfield shift of
the metallacycle protons to & 7.01, and the appearance of 13C
resonances at & 201.3 and & 142.3 assignable to C, and Cy
respectively which are the most indicative of the triene into
diene conversion.5 The conversion (4) — (6) represents a
novel organometallic transformation and for this reason we
have briefly investigated the kinetics of the reaction of (4) with
P(OMe); and PMe,Ph in acetone by u.v.-visible spectropho-
tometry. The rate law, established under pseudo-first-order
conditions, takes the form —d[(4)]/df = ks, [(4)] Where kops.
= ky[L]. The specific rate constants at 25°C are k; = 3.8 and
757 dm3 mol-1 s~1 for L = P(OMe); and PMe,Ph respec-
tively. The activation parameters associated with & (tempera-
ture range 15—35°C) are AH* = 4.67 [8.24] kcal mol~1; AS*
= —44.7[—20.08] cal K- mol-1 (1 cal = 4.18417), for PMe,Ph
and, in square brackets, P(OMe);. The observed second-
order kinetics, the large negative values of AS*, and the
marked effect of the nature of the entering nucleophile on the
reaction rate constant, strongly favour a bimolecular reaction
involving an associative mode of activation. Particularly

§ 'H N.m.r. (CDCl;, 303 K, 500.13 MHz): 6 7.20 (m, 6H, Ph), 7.17
(m, 3H, Ph), 7.10 (m, 6H, Ph), 7.01 (s, 2H, CH), 5.01 (s, 5H, CsHs),
4.02 (t, 2H, CH,), 3.63 (t, 2H, CH,), 3.43 (t, 2H, CH,), and 2.43 (t,
2H, CH,); BC{H} n.m.r. (CDCl;, 303 K, 125.76 MHz): & 201.3
(Cy). 151.7 (C,Ph), 142.3 (Cy), 127.4, 1262, 125.6 (C,Ph), 92.4
(CsHy), 82.2,71.0, 68.3, and 49.5 (CH,).
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noteworthy too are the very low activation enthalpies for the
conversion of (4) into (6), consistent with the expectation that
this should be a low-energy process.

In conclusion, the results presented here describe a hitherto
unanticipated product of the cyclodimerization of two mol-
ecules of alkyne at a transition metal centre. The factor which
probably most influences the formation of the metalla-
cyclopentatriene rather than the expected metallacyclopenta-
diene is the unsaturation ensuing at the ruthenium centre
following cyclo-octadiene displacement and alkyne cyclo-
dimerization. This suggests that metallacyclopentatrienes
should be stabilized at a range of transition metal centres
which satisfy criteria similar to [(n-CsHs)Ru(n-CgH,;)Br].
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